First Place Award « 19

Analysis

As far as I can tell, this program does just what it appears to do, which is absolutely
nothing. Nonetheless, the fact that it even compiles is a shock. This program was
the first one I ever saw that demonstrated such odd practices as radical changes of
semantics before and after macro substitution, playing games with comment delim-
iters, and totally meaningless redefinitions of library and system call names.

In case you are wondering, no, this is not legal Standard C. In fact, none of the pro-
grams so far have been. Don’t hold your breath for the next ones, either.

Kirst Place Award

Sjoerd Mullender <sjoerd@cwi.nl>
Centrum voor Wiskunde en Informatica (Inst. for Math. and CS)

Amsterdam, Netherlands

Robbert van Renesse <rvr@cs.cornell.edu>
Cornell University

Ithaca, New York

/* Portable between VAX11l && PDP11 */

short main[] = {
277, 04735, -4129, 25, 0, 477, 1019, Oxbef, 0, 12800,
-113, 21119, 0x5247, -1006, -7151, 0, Ox4bc, 020004,
14880, 10541, 2056, 04010, 4548, 3044, -6716, 0x9,
4407, 6, 5568, 1, -30460, 0, O0x9, 5570, 512, -=-30419,
Ox7e82, 0760, 6, 0, 4, 02400, 15, 0, .4, 1280, 4, 0,
2y By Oy O OB, 0; 4 0; ",% 0,-12,:0, 4, 9 28",
g, 020, 9, 4, 0, 30, 0, 026, 0, Ox6176, 120, 25712,
T 0121838, *#r, 29303, 29801; 7e”* };

This 1s one of my favorite contest winners of all time. It was submitted by both
authors when they were students (both held bachelor’s degrees in mathematics at
the time) at Vrije Universitait (Free University) in Amsterdam.

Author’s Analysis

“When this program is compiled, the compiler places the array somewhere in mem-
ory, just like it places any compiled code somewhere in memory. Usually, the C
startup code (crt0.o0) calls a routine named main. The loader fills in the address in
the startup code, but, at least on the old systems where this program ran, it doesn’t
know that the main in this program isn’t code but data!

“When the program is run, the C startup code transfers control to the location main.
The contents of the array just happen to be machine instructions for both a PDP-11

and a VAX.

“On the VAX, the routine main is called with the calls instruction. This instruc-
tion uses the first (2-byte) word of the called routine as a mask of registers that are

20 » The 1984 Obfuscated C Code Contest

to be saved on the stack. In other words, on the VAX the first word can be anything.
On the PDP, the first word is a branch instruction that branches over the VAX code.
T'he PDP and VAX codes are thus completely separate.

“T'he PDP and VAX codes implement the same algorithm:

for (v3) |
write(l, "™ :-)\b\b\b\b", 9):
delay () ;

}

“The result is that the symbols : -) move over the screen. delay 1s implemented
differently on the PDP, where we used a nonexistent system call (sys 55), and on
the VAX where we used a delay loop.

“My co-author, Robbert, and I had earlier written a similar program for an assign-
ment on the PDP-11. Along came the first Obfuscated C Code Contest, and we
decided that we should write a program like this, but make it run on two different
architectures. We didn’t think long about what the program should do, so it does
something very simple.

“We started with writing the PDP code in assembler. We both knew PDP-11 assem-
bler, so that was no problem. The assembler code we came up with is as follows:

pdp:
mov pc,r4
tst -(r4d)
sub S9,r4
mov rd4,0f
mov S1, %0
sSys 4; 0:0; 9
mov $1000, r2
1.9
SysS 55
sob r2, 1b
br pdp

“This 1s not the code we originally wrote, but it is the code that we ultimately used
in the program. The string to be printed is shared by the VAX and the PDP code
and 1s located between the two sections. First, the program deals with figuring out
the address of the string. Then the program counter is saved in a scratch register.
Since the program counter points at the second instruction, we subtract 2 from the
scratch register in the second instruction. Then we subtract the length of the string
and store the result in the location with label 0. This has to do with the calling
sequence of system calls on the PDP. Following the sys instruction is the system
call number (4 for write), the address of the buffer (pointed to by label 0), and the
length of the buffer (9). The file descriptor is in register z0. The rest of the code
implements a delay loop. In each iteration, a nonexisting system call (55) slows
things down.

First Place Award - 21

“We assembled this program and extracted the machine code from the resulting
object file. We used this code in the VAX part. Since neither of us was fluent in
VAX assembly, we wrote the VAX code in C and massaged the compiler output.
The VAX assembly program that we came up with 1s as follows:

vax: .word 0400 + (pdp - vax) / 2 - 1
1:
pushl S9
pushal str
pushl S1
calls S3,write
cvitwl 832767, 2
22
decl ¢ 57
jneq 2b
1br 1b
write: .word 0
chmk sS4
ret
str: .ascii " :-)\b\b\b\b"
pdp: .word 4548, 3044, 58820, 9, 4407, 6, 5568, 1, 35076,

0, 9, 5570\, 512, 35117, 32386, 496

“The first word (after the label vax) is the PDP branch instruction. PDP branch
instructions are octal 400 + the distance divided by 2. The string that both the PDP
and VAX programs use is after the str label, and the PDP code 1s after the pdp

label.

“On the VAX, the program pushes 9 (the length of the string), the address of the
string and 1 (the file descriptor) on the stack and calls write. Since we didn’t know

the exact calling sequence for system calls, we just copied the source for the write
system call stub into our program. After write finishes, the program executes a

delay loop, after which it jumps back to the start of the program.

“We assembled this program, and extracted the machine code from the object file.
After this we only had to convert the machine code to ASCII and write a little bit of
C to glue everything together. We wanted to use different formats for each constant
in the resulting array, and we wanted to choose the format randomly. So we wrote a
program to choose an appropriate format at random. The program we wrote for that
follows. This program actually also extracted the machine code from the object

file.

#include <stdio.h>
#include <a.out.h>

main(argc, argv)
char **argv;

22 » The 1984 Obfuscated C Code Contest

register FILE *fp;
register short pos = 0, ¢, n:
register char *fmt:

if (arge != 2) {
fprintf (stderr, "Usage: %s file\n");
exit (1) ;

}

if ((fp = fopen(argv[l], "r")) == NULL) {

fprintf (stderr, "%s: can’t open %s\n", argv[0],
argv[l]\);
exit(2):;
}
fseek(fp, (long) sizeof (struct exec), 0):;
printf("/* portable between VAX and PDP11 ®ANAND™) 2

printf ("short main[] = {\n"):
tor desz) A
if (pos == 0) printf("\t"):

CcC = getc(fp) & 0377:;
if (feof(fp)) break;
n = getc(fp) << 8 | c;
switch (rand() % 5) {

case 0:
case 1:

fmt = "%d"; break:
case 2:

fmt = "%u"; break:
case 3:

fmt = "0%0"; break:
case 4:

fmt = "0x%x"; break:
}

if (32 <= n && n < 127 && (rand() % 4)) fmt = B ra M.

printf(n < 8 2 "%4"* : fmt, n);
pEineE (™, ™)

1f (pos++ == 8) {
printf("\n") ;
pos = 0;

}

else printf (" "),

}
printE ("}, \a");

}

“As can be seen, there is a slight preference for decimal, and also a character format
1s sometimes used, but only if the data is a printable ASCII character.

“When we ran this program, we were almost completely satisfied with the result.
The only problem we had was that the program had chosen an octal representation
for the first word. Since everybody knows what a PDP-11 branch instruction looks

First Place Award - 23

like (everyone knows that the traditional magic word for an executable, 0407, 1s a
PDP-11 branch), we changed that to decimal. After checking the size of the result-
ing program we saw that it was one byte too long. The limit was 512 bytes, and our
program was 513 bytes. So we changed the word and in the comment to &&."

